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POINCARÉ MAPPING METHOD

FOR HYDRODYNAMIC SYSTEMS.

DYNAMIC CHAOS IN A FLUID LAYER

BETWEEN ECCENTRICALLY ROTATING CYLINDERS

UDC 532.5:517.928.7A. G. Petrov

Investigation of the plane–parallel motion of particles of an incompressible medium reduces to inves-
tigation of a Hamiltonian system. The Hamiltonian function is a stream function. The time-periodic
mixing of an incompressible medium is described by a time-periodic Hamiltonian function. The mix-
ing of the medium is associated with dynamic chaos. Transition to dynamic chaos is studied by
analysis of the positions of Lagrangian particles at times divisible by the period — Poincaré recur-
rence points. The set of Poincaré recurrence points is studied with the use of Poincaré mapping on
the phase flow. A method for constructing Poincaré maps in parametric form is proposed. A map is
constructed as a series in a small parameter. It is shown that the parametric method has a number of
advantages over the generating function method is shown. The proposed method is used to examine
the motion of particles of an incompressible viscous fluid layer between two circular cylinders. The
outer cylinder is immovable, and the inner cylinder rotates about a point that does not coincide with
the centers of both cylinders. An optimal mode for the motion is established, in which the area of
the chaotic region is maximal.

Key words: hydrodynamic systems, Cauchy problem, small parameter, dynamic chaos.

1. Formulation of the Problem. We consider the Cauchy problem for the Hamiltonian equations for a
system with n degrees of freedom:

Ẋ = HY , Ẏ = −HX , X(t0) = X0, Y (t0) = Y0, HX =
∂H

∂X
, HY =

∂H

∂Y
. (1.1)

Here H(t,X,Y ) = H(t+T,X,Y ) is an arbitrary, fairly smooth T -periodic function andX and Y are n-dimensional
vectors.

At present, there is no universally accepted definition of random motions. For systems with one degree of
freedom, it is possible to give a geometrically simple, though mathematically nonrigorous, definition of chaos. In
this case, the Hamiltonian can be treated as a stream function for incompressible fluid flow. The Hamiltonian
system (1.1) defines the motion of Lagrangian particles of a medium. Let us introduce some notions required to
define chaos for Lagrangian particles.

On the trajectory X(t, t0,X0,Y0), Y (t, t0,X0,Y0) determined by solving system (1.1), we consider the
positions of the points X(tn, t0,X0,Y0), Y (tn, t0,X0,Y0), where tn = t0 +Tn (n = 0,±1,±2, . . .) at times multiple
to the period. Such points are called Poincaré recurrence points (PRP).

For the plane–parallel flow of an incompressible medium there is a stream function, which will be the Hamil-
tonian of the system. The trajectory of a Lagrangian particle of the medium is found by solving the problem (1.1),
and the PRP represents the particle track recorded at a frame rate corresponding to the period T . The PRP form a
countable set of points on a plane, which, generally speaking, depends on t0, X0, and Y0. If the set of PRP belongs
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to a one-dimensional line, this line is called an invariant curve. For ordered motion, all sets of PRP form a set of
invariant curves. The type of motion in which the set of PRP fills a two-dimensional region will be called random
motion of the PRP.

For a periodic dependence of the Hamiltonian on time, the set of PRP can be calculated from the recursive
formulas (Xn,Yn) = PTt0 (Xn−1,Yn−1) [P∆t

t0 (∆t = t− t0) is a map on the phase flow of system (1.1), i.e., a solution
of problem (1.1)]. The map over the period PTt0 is called the Poincaré map.

It should be noted that the above definition of random motion does not depend on t0. Indeed, with conversion
from t0 to t0 + ∆t (0 < ∆t < T ), the set of PRP is transformed by means of the continuous map P∆t

t0 . In this
case, a one-dimensional line or a two-dimensional region becomes a one-dimensional line or a two-dimensional
region, respectively. If ∆t = kT is a multiple of the period, the map P∆t

t0 = P kTt0 transforms the PRP into itself.
Otherwise, ∆t can be represented by ∆t = kT + ∆t′ (0 < ∆t′ < T ). The map P∆t

t0 is identical to the map P∆t′

t0

and does not change the topological structure of the PRP.
For definiteness, we choose t0 = 0 and omit the superscript and subscript in the notation of the Poincaré

map: PT0 = P .
Investigation of the chaotic nature of motion using the Poincaré map is called the method of Poincaré

sections [1–4]. Because determining Poincaré maps is a complex computational problem,the PRP are commonly
found numerically, and analytical methods are used only for very simple systems.

In studies of systems with one degree of freedom with a Hamiltonian of the standard form

H = εH1 + ε2H2 + ε3H3 + . . . , (1.2)

where ε is a small parameter, the following theoretical results are used. It is known that an autonomous Hamil-
tonian system (the Hamiltonian does not depend explicitly on time) is integrable. Lagrangian particles lie on
one-dimensional streamlines H(Xn,Yn) = const, and the motion is ordered. For a nonautonomous system of the
standard form, the asymptotic procedure of the averaging method [5, 6] allows one to construct a nearly identical
canonical change of variables X,Y →X,Y for any integer k > 0, so that with accuracy up to εk+1, the equations
in the new variables have the form of an autonomous Hamiltonian system with a Hamiltonian H̄(X,Y ).

It should be born in mind that the averaged Hamiltonian for any Hamiltonian system (1.1) cannot be
exactly determined in principle. According to the Neishtadt theorem [7], the Hamiltonian of the system can
be reduced to an almost autonomous form H̄(X,Y ) + R(t,X,Y ), where |R| < C1 exp (−C/ε), by a sequence of
canonical replacements. Exact determination of the averaged autonomous Hamiltonian is possible only for integrable
Hamiltonian systems. Generally, the estimate of the remainder R cannot be improved.

In the absence of an exponentially small component (R = 0), the system is integrable, and chaos is not
observed in the case of one degree of freedom. Chaos is due to the exponentially small quantity R(t,X,Y ), which
cannot be determined by averaging methods. Therefore, it makes no sense to employ averaging methods in studies
of transition to random motions in systems with one degree of freedom.

According to the results of asymptotic methods described above, the following typical picture of chaos growth
in nonintegrable dynamic systems is observed with increase in the parameter ε. For a small ε, the sets of PRP lie on
invariant curves H̄(Xn,Yn) = const, determined by averaging methods with accuracy up to R = C1 exp (−C/ε). In
this case, by virtue of the smallness of R, chaos is practically invisible. With a certain increase in ε, the exponential
component begins to show up, chaos becomes noticeable, and the area of the chaotic region increases rapidly with
increase in ε.

The occurrence of chaos is usually associated with the existence of unstable fixed points of the Poincaré
map [1–4, 8]. The fixed point P (X,Y ) = (X,Y ) corresponds to a periodic solution with period T , and the
fixed point P k(X,Y ) = (X,Y ) to a periodic solution with period kT . The problem of Lyapunov’s stability
of a periodic solution reduces to solving the stability problem for the fixed point of the map using the method
of Lyapunov’s exponents [3]. Because the analytic form of the map P is unknown, Lyapunov’s exponents are
determined numerically. Below the map P and Lyapunov’s exponents are found analytically in the form of series
in ε.

Proving the chaotic state using any rigorous definition of chaos is an extremely difficult problem even for a
system with one degree of freedom. Examples of proof of the chaotic state for simple maps are given in [9]. For
Hamiltonian systems, the chaotic state is proved employing Mel’nikov’s theorem [3], which involves evaluation of
a rather complex integral. Analytically, by using the Mel’nikov method, it is possible to prove the chaotic nature
of motion for a mathematical pendulum with a vibrating suspension point. In this system with a time-periodic
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Hamiltonian there is a separatrix representable in simple analytic form, which allows use of Mel’nikov’s theorem.
Usually, verification of the chaotic state by means of Mel’nikov’s theorem or another method is performed by rather
unwieldy numerical methods.

Some fairly simple hydrodynamic systems are studied in [8] using numerical determination of PRP. The
motion of a viscous fluid in a region with a time varying boundary has not been studied. The motion of particles
of incompressible media with different rheology in a thin deformed layer was studied in [10]. The conditions of no
tangential velocity are imposed on the boundaries. Numerical calculations showed that chaos is practically absent
in such systems at small Reynolds numbers.

In the present paper, we propose a parametric method for constructing maps on the phase flow of Hamiltonian
systems. The advantages of the parametric method over the well-known generating function method are shown.
The main advantages are the ease and high accuracy of calculations of the Poincaré recurrence points over a wide
range of parameters.

The asymptotic theory describing transition to random motion is used to study a thin layer of a high-viscosity
fluid between two eccentrically rotating cylinders.

2. Equation Defining the Poincaré Map. Generating Function Method. The generating function
method is used for canonical transformations [11, 12]. This method can also be used to construct Poincaré maps.
For simplicity, we consider the Cauchy problem (1.1) for a system with one degree of freedom (although all results
are easy to extend to the general case of a system with n degrees of freedom). A map X0,Y0 →X,Y that retains
the phase volume is represented via a differentiable function of mixed variables X0Y + S(t,X0,Y ) (generating
function) by the relation

X = X0 +
∂S

∂Y
, Y0 = Y +

∂S

∂X0
. (2.1)

If the condition

1 +
∂2S

∂X0 ∂Y
> 0 (2.2)

is satisfied, the system is solvable for X and Y . The result of the solution is a map with Jacobian equal to unity
for any function S. If the generating function S is determined from the Hamiltonian–Jacobi equation

St(t,X0,Y ) = H(t,X0 + SY (t,X0,Y ),Y ), (2.3)

the map (2.1) is a solution of the Hamiltonian system (1.1).
For a system of the standard form, the function S is represented as a series in powers of ε. Any finite number

of terms of the series defines a map that retains the phase volume. This is an advantage of the generating function
method. However, this method also has a number of significant disadvantages:

1. Maps of the form (2.1) are not universal. (For example, rotation through 90◦ cannot be represented in the
form of (2.1). For such a map, one needs to chose another pair of variables in the generating function, but identity
transformations cannot be represented in these variables [11].)

2. The resolvability condition considerably narrows the range of the parameter ε. In addition, this condition
is noninvariant under rotation of Cartesian axes on the phase plane.

Below we propose a method for parametric representation of maps that is free of the indicated disadvantages.
Parametric Method. Let us seek a map X0 → X with Jacobian equal to unity in parametric form X =

X(t,x), X0 = X(t,x), where x, X0, and X are two-dimensional vectors, X0 = X(0) is the initial point on the
trajectory, X is a point on the trajectory at time t, and x is a certain vector parameter. Any such map can be
represented as

X0 = x− 1
2
I
∂Ψ
∂x

, X = x+
1
2
I
∂Ψ
∂x

,
∂Ψ
∂x

=
(

Ψx

Ψy

)
, (2.4)

where Ψ(t,x) is an arbitrary function of the vector-parameter and time and I is a symplectic matrix,

X =
(
X

Y

)
, x =

(
x

y

)
, I =

(
0 1
−1 0

)
. (2.5)

The Jacobians of both maps (2.4) are equal to the same function:

J(t,x) = det
(∂X
∂x

)
= det

(∂X0

∂x

)
= 1 +

1
4

det
( ∂2Ψ
∂x ∂x

)
. (2.6)
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Therefore, the Jacobian of the superposition of maps X0 → x → X is identically equal to unity. The map
(2.4) is an analog of (2.1), and the condition (2.2) is replaced by the condition J > 0.

In order that the map (2.5) be a solution of the Cauchy problem for the Hamiltonian equations, the function
Ψ should satisfy the analog of the Hamiltonian–Jacobi equation (2.3)

∂Ψ
∂t

= H
(
t,x+

1
2
I
∂Ψ
∂x

)
, Ψ(t0,x) = 0. (2.7)

The map (2.4) on a plane is written in coordinate form as

X0 = x−Ψy/2, Y0 = y + Ψx/2, X = x+ Ψy/2, Y = y −Ψx/2. (2.8)

Such a parametric form of a map with Jacobian equal to unity is obtained in [13].
According to (2.8), Eq. (2.7) for the function Ψ(t, x, y) is written as

∂Ψ
∂t

= H
(
t, x+

1
2
∂Ψ
∂y

, y − 1
2
∂Ψ
∂y

)
, Ψ(0, x, y) = 0.

The results given above underly the asymptotic method of obtaining Poincaré maps. Let us formulate them as the
following theorem.

Theorem 1. The map (2.4) is a solution of the problem (1.1) if and only if the function Ψ is a solution of
the problem (2.7).

Theorem 1 is a special case of the more general theorem on parametrization of canonical transformations,
which is proved below.

3. Parametric Form of Canonical Transformations. The general result of parametrization of the
canonical change of variables in Hamiltonian systems is formulated as the following theorem.

Theorem 2. Let a transformation of variables q, p→ Q,P be written in parametric form

q = x−Ψy/2, p = y + Ψx/2, Q = x+ Ψy/2, P = y −Ψx/2. (3.1)

Then,
1) the Jacobians of the two transformations q = q(t, x, y), p = p(t, x, y) and Q = Q(t, x, y), P = P (t, x, y)

are identically equal:

∂(q, p)
∂(x, y)

=
∂(Q,P )
∂(x, y)

= J(t, x, y);

2) for J > 0, the transformation (3.1) of variables q, p → Q,P is canonical and transform a Hamiltonian
system H̃ = H̃(t, q, p) into a Hamiltonian system H = H(t, Q, P ) if the function Ψ is a solution of the equation

Ψt(t, x, y) + H̃(t, q, p) = H(t,Q, P ), (3.2)

where the arguments q, p and Q,P in the Hamiltonians H and H̃ are expressed in terms of the parameters x and y
by (3.1).

We shall prove ststement 2 using the canonicity criterion, according to which the differential form δF =
PδQ− pδq − (H̃ −H)δt is a full differential of a certain function δF (t, x, y) = Ftδt+ Fxδx+ Fyδy [11].

Substituting expressions (3.1) of the variables q, p,Q, and P in terms of the parameters x and y into the
differential form δF , replacing H − H̃ by Ψt according to (3.2), and performing obvious transformations, we obtain

δF = (y −Ψx/2)(δx+ Ψytδt/2 + Ψyxδx/2 + Ψyyδy/2)

− (y + Ψx/2)(δx−Ψytδt/2−Ψyxδx/2−Ψyyδy/2)−Ψtδt

= y(Ψytδt+ Ψyxδx+ Ψyyδy)−Ψxδx−Ψtδt = δ(yΨy −Ψ)

as was to be proved.
Statement 1 follows from the fact that for the canonical replacement, the Jacobian ∂(Q,P )/∂(q,p) = 1.

Here q, p, Q, P , x, and y are n-dimensional vectors. Therefore, the method of canonical replacements described
above is valid for Hamiltonian systems of an arbitrary order n.

In the particular case of H̃ = 0, the variables q and p are the initial point q = X0, p = Y0 of the trajectory
Q = X(t), P = Y (t) of a system with a Hamiltonian H(t,X, Y ). Thus, Theorem 1 is also proved.
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4. Asymptotic Method for Constructing Poincaré Maps. Let the Hamiltonian has a small factor ε
(system of the standard form) and is represented as the power series (1.2). Then, the solution of Eq. (2.7) with
zeroth initial conditions is represented as a series in powers of ε:

Ψ = εΨ1 + ε2Ψ2 + ε3Ψ3 + . . . . (4.1)

To calculate the coefficients of the series, we substitute the series (4.1) into the right side of Eq. (2.7). Let us expand
the right side in a power series of ε:

H(t, x+ Ψy,y/2−Ψx/2, ε) = εH1 + ε2(H2 +H1xΨ1y/2−H1yΨ1x/2)

+ ε3[H3 + (H2xΨ1y −H2yΨ1x +H1xΨ2y −H1yΨ2x)/2

+ (H1xxΨ2
1y − 2H1xyΨ1xΨ1y +H1yyΨ2

1x)/8] + . . . .

For the derivatives of Ψn, we have

∂Ψ1

∂t
= H1,

∂Ψ2

∂t
= H2 +

1
2

(H1xΨ1y −H1yΨ1x),

∂Ψ3

∂t
= H3 +

1
2

(H2xΨ1y −H2yΨ1x +H1xΨ2y −H1yΨ2x) +
1
8

(H1xxΨ2
1y − 2H1xyΨ1xΨ1y +H1yyΨ2

1x), . . . .

From this, the coefficients of series (4.1) are expressed in terms of the coefficients of series (1.2) by integration over t
taking into account the conditions Ψn = 0 at t = 0. For the Poincaré map over period T with accuracy to third
order, we obtain

Ψ =

T∫
0

[
εH1(t, x, y) + ε2

(
H2(t, x, y)− 1

2

{
H1(t, x, y),

t∫
0

H1(t′, x, y) dt′
})]

dt, (4.2)

where {f, h} = fyhx − fxhy is the Poisson’s bracket.
The convergence of series (4.2) is proved by the majorant method in the same manner as for the general

system of differential equations in standard form [14]. Thus, the Poincaré map is an analytic function in the
parameter ε, which agrees with the well-known theorem on the analyticity of solutions of differential equations in
parameter.

Autonomous Hamiltonian Systems. For an autonomous Hamiltonian system with a Hamiltonian H(X,Y ),
the procedure of expanding in a power series of the function Ψ is considerably simplified. The solution of Eq. (2.7)
Ψ(t, x, y) is an odd function in the argument t [15]. This property can be used to simplify calculations of the series
of the function Ψ in the case of a Hamiltonian of the standard form H = εH1 +ε2H2 +ε3H3 + . . . . The Hamiltonian
is formally written as H = εH̃(X,Y, ε1), where H̃ = H1 +ε1H2 +ε2

1H3 + . . . . For ε1 = ε, this Hamiltonian coincides
with the initial one. By virtue of the indicated property, the solution of (2.7) for ε1 = const is represented as a
series in odd powers of εt:

Ψ = (εt)Ψ̃1 + (εt)3Ψ̃3 + (εt)5Ψ̃5 + . . . .

The coefficients of this series Ψ̃n(x, y, ε1) are much easier to calculate from Eq. (2.7) than in the general case. Thus,
to obtain the series with accuracy up to (εt)5, it is necessary to calculate only two coefficients rather than four, as
in the general case:

Ψ = (εt)H̃(x, y, ε1) + (εt)3[H̃xxH̃
2
y − 2H̃xyH̃xH̃y + H̃yyH̃

2
x]/8 +O(εt)5. (4.3)

To obtain the final series in powers if ε, it is necessary to set ε = ε1 and to substitute the series H̃(X,Y, ε) =
H1 + εH2 + ε2H3 + . . . into (4.3).

Because a nonautonomous Hamiltonian system can be reduced to an autonomous system by increasing the
number of degree of freedom by unity, the procedure of deriving the Poincaré map for a general nonautonomous
system can be reduced to the procedure described above for autonomous systems. The significant simplifications
for autonomous systems can be used to obtain a power series with a larger number of terms by less unwieldy
calculations. Thus, using an analog of the formula (4.3), we obtain a map that is two orders of magnitude (in ε)
more accurate than formulas (4.2).
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Averaging Procedure. An averaging procedure using generating functions is described in [5]. The parametric
method is also an effective means for constructing averaged Hamiltonian in the case of a time-periodic Hamiltonian.
Examples of such calculations accurate up to ε3 are given in [10, 15, 16].

The averaged Hamiltonian multiplied by the period T and the mapping function coincide with accuracy up
to ε3:

TH̄(X,Y, ε) = Ψ(T,X, Y, ε). (4.4)

(For the generating function there is no such a simple expression in this approximation.) Taking into account (4.2),
from (4.4) we obtain the well-known formula of the averaged Hamiltonian in this approximation [5]:

H̄ =
1
T

Ψ̄ =
〈
H − 1

2

{
H,

t∫
0

H dt
}〉

+O(ε3)

(the expression in angular brackets denotes the average over the period).
Similar simplifications can be carried out in the higher Approximations as well.
Thus, to calculate the coefficients of asymptotic expansions of the averaged Hamiltonian, the parametric

method is more effective than the generating function method [5].
5. Map of a Small Region. We assume that the Hamiltonian H(t,X, Y, ε) is an analytic function of the

coordinates X and Y , time t, and the parameter ε. As a function of time, the Hamiltonian has period T . The
coordinates X(t) and Y (t) vary in a certain compact region.

According to the theory of finite strains [17], the map of a small neighborhood of a point X0 is given by the
matrix A = ∂X/∂X0 (X is the radius-vector with the coordinates X and Y ). Using the map (2.7), we can express
the matrix A in terms of derivatives of the mapping function Ψ = Ψ(T, x, y, ε).

According to representation (2.4), the matrix A is equal to the product of the inverse mapping matrix
x→X0 into the mapping matrix x→X:

A =
(
E − 1

2
I
∂2Ψ
∂X2

)−1(
E +

1
2
I
∂2Ψ
∂X2

)
,

∂2Ψ
∂X2

=
(

Ψxx Ψxy

Ψxy Ψyy

)
, I

∂2Ψ
∂X2

=
(

Ψxy Ψyy

−Ψxx −Ψxy

)
.

Using the identity (
E − 1

2
I
∂2Ψ
∂X2

)−1

=
1
J

(
E +

1
2
I
∂2Ψ
∂X2

)
,

the matrix A can be represented as

A =
1
J

[
(2− J)

(
1 0
0 1

)
+
(

Ψxy Ψyy

−Ψxx −Ψxy

)]
, (5.1)

where J is the Jacobian defined by (2.6).
Let us express the components of the local mapping matrix in terms of the second derivatives of the function

Ψ and, for comparison, in terms of the second derivatives of the generating function, by writing this map in the
form of (2.1):

A11 =
2− J
J

+
Ψxy

J
=

(1 + SXY )2 − SXXSY Y
1 + SXY

,

(5.2)

A12 =
Ψyy

J
=

SY Y
1 + SXY

, A21 = −Ψxx

J
= − SXX

1 + SXY
, A22 =

2− J
J
− Ψxy

J
=

1
1 + SXY

.

The map of a small neighborhood (δX0, δY0) → (δX, δY ) with matrix A has two autonomous invariants
under rotations of the coordinate system:

I1 = A11 +A22, I2 = A12 −A21.

For a parametric map, J and ∆Ψ = Ψxx + Ψyy are also invariants because they are expressed in terms of the
invariants I1 and I2:

J = 4/(I1 + 2), ∆Ψ = 4I2/(I1 + 2).
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Therefore, the condition J > 0 for the existence of a parametric map is invariant and can be represented as I1+2 > 0.
In contrast, the condition of existence of the map (2.2) with a generating function is noninvariant. In view of the
last relation (5.2), the condition J > 0 can be represented as A22 > 0. Satisfaction of the inequality A22 > 0
depends on the choice of the coordinate system.

If a parametric map and the map (2.1) are calculated with the same asymptotic accuracy, the region of
existence of the parametric map is much wider than the region of existence of the map (2.1). A more detailed
comparison of these maps is given below.

In studies of transition to the random mode for two-dimensional maps, the invariant I1 and the invariant
J(I1), depending on the former, are of primary importance. The characteristic factor m is a root of the characteristic
polynomial m2 − I1m+ 1 = 0 and depends only on I1 or J .

It should be noted that in calculations of maps accurate to the third order by (4.2) in the degenerate case,
the invariant J is determined from the formula (2.6) with accuracy up to the fifth order in ε. This makes it possible
to accurately study the stability of a fixed point of the map and to describe transition to a random mode.

By the polar expansion theorem, known in analytic geometry, the matrix A is represented as the product of
a rotation matrix and a symmetrical matrix. In turn, the symmetric matrix can be reduced to the principal axes
by rotation of the coordinate system. Thus, we obtain

A = C(ϕ)C(ϕ0)
(
l1 0
0 l2

)
C(−ϕ0), l1l2 = 1, C(ϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
. (5.3)

The mapping δX = AδX0 transforms a unit circle to an ellipse of the same surface area with axes l1 and l2. The
angle ϕ0 determines the direction of the fiber in the circle |δX0| = 1 that is elongated as much as possible by the
mapping. The angle ϕ specifies the rotation of this fiber. Using (5.1) and (5.3), all the mapping characteristics
listed above can be expressed in terms of elements of the Hessian matrix Ψxx, Ψxy, and Ψyy.

The largest and smallest elongations of the fiber are equal to

l1 = R+
√
R2 − 1, l2 = R−

√
R2 − 1, R2 = ((2− J)2 + (Ψxx + Ψyy)2)/(4J2) + 1/2.

The angles ϕ and ϕ0 are given by

tan ϕ = (A21 −A12)/(A11 +A22), tan (ϕ+ 2ϕ0) = (A12 +A21)/(A11 −A22).

The above-mentioned characteristics l1, ϕ,m1, and λ1 are also invariants and expressed in terms of the two
basic invariants. The angle ϕ0 is not an invariant and depends on the choice of the coordinate axes δX and δY .

6. Advantages of the Parametric Mapping Method. In the parametric method, the function Ψ(t, x, y)
plays the role of a generating function. Just as in the generating function method, Ψ(t, x, y) is determined from a
Hamiltonian–Jacobi type equation.

However, as is noted above, the parametric method has a number of advantages over the generating function
method:

1. Maps of simple form cannot be expressed in terms of a generating function. For example, rotation
through 90◦ cannot be expressed in terms of S(X0, Y ) (mapping X = Y0, Y = −X0). Using the function Ψ = x2+y2

and formulas (2.8), these mapping is parametrized as follows:

X0 = x− y, Y0 = y + x, X = x+ y, Y = y − x.

In this sense, the parametric representation is preferred.
2. Generally speaking, the resolvability condition (2.2) depends on the choice of Cartesian coordinates X

and Y , whereas in the parametric method, the condition J > 0 is invariant under rotations of the coordinates X
and Y .

3. In approximations of identical accuracy in the small parameter ε, the range of the parameter ε in which
the condition J > 0 is satisfied is much wider than the range of ε in which the condition 1 + ∂2S/∂X0∂Y > 0 is
satisfied.

4. The coefficients Ψn of the series Ψ = εΨ1 + ε2Ψ2 + . . . are much smaller than the coefficients of the
series Sn for the generating function.

5. For an autonomous system, the function Ψ is represented as a series in odd powers of ε.
6. The map over time t and the averaged Hamiltonian are linked by the simple relation Ψ = tH̄(x, y) with

accuracy up to ε3.
The advantages of the parametric method will be shown for the case where the map is found exactly.
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Fig. 1. Diagram of motion of the inner cylinder.

The Hamiltonian is given by

H = ε[(X2 + Y 2)/2 +Xb sin (t0 + t)].

The system of equations is integrated exactly, and the coordinates Xn and Yn of the recurrence points at times
tn = 2πn are equal to

Xn −Xc = (Xn−1 −Xc) cos (2πε) + (Yn−1 − Yc) sin (2πε),

Yn − Yc = −(Xn−1 −Xc) sin (2πε) + (Yn−1 − Yc) cos (2πε),

Xc = [bε2/(1− ε2)] sin t0, Yc = [bε/(1− ε2)] cos t0.

The recurrence points lie on a circle with center Xc, Yc, and the angular distance between them is equal to 2πε.
In the parametric method,

Ψ(x, y) = tan (πε)[(x−Xc)2 + (y − Yc)2], J = 1/ cos2 (πε) > 0.

In the generating function method,

S(X0, Y ) = [(1− cos (2πε))/ cos (2πε)](X0 −Xc)(Y − Yc) + tan (2πε)[(X0 −Xc)2 + (Y − Yc)2]/2,

1 + SXY = 1/ cos (2πε) > 0.

The example considered above leads to the following conclusions:
(a) the radii of convergence of the power series in ε for Ψ, equal to 1/π, are twice the radii of convergence of

the series for S (the parametric method allows rotations not exceeding 180◦, and the method of generating functions
allows rotations not exceeding 90◦);

(b) The coefficient of the series Ψn is approximately a factor of 2n smaller than the coefficient Sn; accordingly,
for the remainders of these series rn and Rn, the equality rn = 2−nRn holds.

Statements 1–6 are easily verified.
The example considered below is a rather complex nonintegrable hydrodynamic system of equations, in

which transition to dynamic chaos for rather large values of the parameter ε can be described by the parametric
method.

7. Unsteady Flow of a Viscous Fluid Layer between Eccentrically Rotating Cylinders. Kinemat-
ics of Motion of Circular Cylinders. We consider the motion a circular cylinder located inside another immovable
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circular cylinder. The axes of both cylinders are vertical. Figure 1 gives a cross section of the cylinders, showing
the region between two circles. The outer circle and its center O2 are immovable. The inner circle rotates with
angular velocity 2ω, so that the center of the inner circumference O1 describes a circumference with fixed center O
and radius ε/2. The angle O1OO2 varies as ∠O1OO2 = 2ωt. In the rectangular triangle O2O1P , ∠O1PO2 = ωt,
and, therefore, the distance between the center varies under the harmonic law |O1O2| = ε sin (ωt) (Fig. 1b). The
center line (x axis) is perpendicular to the leg O1P and rotates with angular velocity ω. The cylinders move in a
coordinate system with a fixed center line (Fig. 1a) so that the inner cylinder rotates with angular velocity ω, and
its center oscillates under the law x = |O1O2| = ε sin (ωt). The outer cylinder in this coordinate system rotates
with velocity −ω in opposition to the direction of rotation of the inner cylinder.

Let the radius of the inner circle be equal to R, and the radius of the outer circle to R+ 1. We calculate the
distance AB between the two circles for large value of R. For this, we apply the cosine rule to the triangle O1O2A

(Fig. 1c):

|O1O2|2 + |O2A|2 − 2|O1O2| |O2A| cosϕ = |O1A|2.

Substituting |O1O2| = ε sin (ωt), |O1A| = R, and |O2A| = R+ 1− |AB|, we obtain the following equation for |AB|:

ε2 sin2 (ωt) + (R+ 1− |AB|)2 − 2ε sin (ωt)(R+ 1− |AB|) cosϕ = R2.

From this we have

|AB| = 1− ε sin (ωt) cosϕ+O(1/R). (7.1)

Stream Function. We proceed to solving the problem of viscous incompressible flow in the layer between two
cylinders. This problem was exactly solved by Petrov for the case of coaxial rotation. In the thin layer approximation
(R� 1), Sommerfeld (1904) obtained a solution for the case where the inner cylinder rotates about its center and
its center does not coincide with the center of the outer cylinder. Joukowski and Chaplygin solved this problem
in the inertialess Stokes approximation without assuming this layer to be thin. The results were published in 1887
and 1906 [18]. In all the cases considered, the flow region does not vary with time, the flow is steady, and the
stream function does not depend on time. In these cases, the equations of motion for the fluid particles form an
integrable system. The fluid particles move along streamlines, on which the stream function is constant. Dynamic
chaos is absent in such systems.

In our case, the flow region varies with time, the problem is substantially unsteady, and the stream function
(Hamiltonian H) depends on time. To solve this problem, we shall use the asymptotic approximation R � 1 of
lubricating layer theory. This approach was described in [19].

We shall seek the stream function in the form of the dependence RH(t, ϕ, Y ), where Y = R+ 1− r, and the
velocity components in the form

vϕ = Rϕ̇ = R
∂H

∂Y
, vY = Ẏ = −∂H

∂ϕ
, (7.2)

where r and ϕ are polar coordinates with origin at the point O2. In the variables ϕ and Y , the flow region is
ϕ ∈ (0, 2π), Y ∈ (0, Ymax) and the upper boundary of the region is specified by Eq. (7.1):

Ymax = |AB| = 1− ε sin (ωt) cosϕ.

The motions of the fluid at R� 1 are given by the equations

∂p

∂Y
= 0,

∂p

R∂ϕ
= µ

∂2vϕ
∂Y 2

.

From this it follows that the pressure p depends only on the angle ϕ. Replacing the component vϕ by its expression
in terms of the stream function, we obtain the equation

dp(ϕ)
Rdϕ

= µR
∂3vϕ
∂Y 3

. (7.3)

The attachment conditions are satisfied on the boundaries of the cylinders:

Y = 0: H = 0,
∂H

∂Y
= −ω; (7.4)

Y = Ymax: − ∂H

∂ϕ
=
∂Ymax

∂t
+ ω

∂Ymax

∂ϕ
,

∂H

∂Y
= ω. (7.5)
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In addition, it is necessary to require that the pressure function p(0) = p(2π) be unique. By virtue of (7.3), this
condition is written as

2π∫
0

∂3H

∂Y 3
dϕ = 0. (7.6)

The boundary-value problem (7.3)–(7.6) is solved as follows. Introducing the discharge function Q(t, ϕ) =
H(t, ϕ, Ymax), we represent the solution as

H = Q(t, ϕ)(3Ỹ 2 − 2Ỹ 3) + ωYmax[−Ỹ (1− Ỹ )2 + Ỹ 2(−1 + Ỹ )], Ỹ = Y/Ymax.

In this representation, the stream function satisfies Eq. (7.3), the boundary conditions (7.4), and the second condi-
tion (7.5). Substituting the expression for H into the first condition (7.5), we obtain the equation of conservation
of mass in the layer:

∂Q

∂ϕ
+
∂Ymax

∂t
= 0.

Integrating this equation, we obtain Q = εω cos (ωt) sinϕ + c(t). From the uniqueness condition for pressure, we
have c(t) = 0.

Thus, in the thin layer approximation, the Hamiltonian of the system has the form

H(t, ϕ, Y ) = ωε cos (ωt) sinϕ(3Ỹ 2 − 2Ỹ 3) + ω(Ỹ − Ỹ 2)Ymax. (7.7)

8. Motion of Viscous Fluid Particles between Eccentrically Rotating Cylinders. The positions
of the Poincaré recurrence points ϕn and Yn at times tn = 2πn/ω are found by solving the Cauchy problem for the
Hamiltonian equations (7.2):

ϕ̇ =
∂H

∂Y
, Ẏ = −∂H

∂ϕ
, ϕ(0) = ϕ0, Y (0) = Y0. (8.1)

At these times, the axis O1 and O2 of the inner and outer cylinders coincide, and the flow region in the variables ϕ
and Y is a rectangle ϕ ∈ [0, 2π), Y ∈ (0, 1). Figure 2 shows the Poincaré recurrence points for different values of the
parameter ε, found by numerical solution of Eqs. (8.1) using the Runge–Kutta method. The points correspond to
the times tn = 2πn/ω, n = 0, 1, . . . , 400 at which the centers of the circles O1 and O2 coincide. In Fig. 2, the initial
Poincaré recurrence points are denoted by filled circles and the fixed points by open circles. For ε = 0, the fluid
flow is a simple shear Couette flow, and the points move along straight lines Y = const (in polar coordinates, these
are concentric circles). Even for small values of ε, the phase pattern is complicated and there is transition to chaos,
which is generated at the point ϕ = π, Y = 1/2. It should be noted that the largest area of the chaotic region is
reached at ε = 0.5. For ε > 0.5, two subregions with invariant curves of recurrence points grow at the center of the
flow region as ε increases. The recurrence points that entered these subregions do not leave them. Thus, the best
mixing is reached for ε = 0.5.

9. Poincaré Map. To reduce the Hamiltonian (7.7) to the standard form, we make two canonical replace-
ments, using generating functions.

The first replacement ϕ, Y → q̃, p̃, which maps a flow region with curvilinear boundaries ϕ ∈ [0, 2π),
Y ∈ (0, Ymax) onto a rectangle q̃ ∈ [0, 2π), p̃ ∈ (−1/2, 1/2), corresponds to the generating function

S1(ϕ, p̃) =
(1

2
+ p̃
) ϕ∫

0

Ymax dϕ =
(1

2
+ p̃
)

(ϕ− ε sin (ωt) sinϕ).

Using the well-known formulas [11], we obtain

q̃ =
∂S1

∂p̃
= ϕ− ε sin (ωt) sinϕ, Y =

∂S1

∂ϕ
=
(1

2
+ p̃
)
Ymax (9.1)

and the Hamiltonian in the new variables:

H̃(t, q̃, p̃) =
∂S1

∂t
+H = −ωp̃2 + εω

(
p̃2 − 1

4

)
(sin (ωt) cosϕ− 2p̃ cos (ωt) sinϕ).

Here the dependence ϕ(t, q̃) is defined by the first of Eqs. (9.1).
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Fig. 2. Diagram of viscous flow between eccentrically rotating cylinders [numerical calculation by Eqs. (8.1) using
the Runge–Kutta method]: filled circles are the initial Poincaré recurrence points and open circles are fixed points.
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The second canonical replacement q̃, p̃→ q, p, which brings the system to the standard form, corresponds to
the generating function S2(t, q, p̃) = ωtp̃2 − qp̃. The formulas of change of variables and the modified Hamiltonian
are written as

q̃ = −∂S2

∂p̃
= q − 2pωt, p = −∂S2

∂q
= p̃,

(9.2)
˜̃H(t, q, p) = εωF (t, ϕ, p), F = (p2 − 1/4)(sin (ωt) cosϕ− 2p cos (ωt) sinϕ).

Here ϕ, as a function of t, q, and p, is determined implicitly from the equation

ϕ− ε sin (ωt) sinϕ = q − 2pωt. (9.3)

The equations of particle motion in the variables q and p are written as

q̇ =
∂ ˜̃H
∂p

= εω
(∂F
∂p
− 2ωt
Ymax

∂F

∂ϕ

)
, ṗ = − εω

Ymax

∂F

∂ϕ
. (9.4)

From (9.3) we find the partial derivatives

∂ϕ

∂t
=
−2pω + εω cos (ωt) sinϕ

Ymax
,

∂ϕ

∂q
=

1
Ymax

,
∂ϕ

∂p
= − 2ωt

Ymax

and the total derivative

ϕ̇ =
∂ϕ

∂t
+ q̇

∂ϕ

∂q
+ ṗ

∂ϕ

∂p
.

Using the formulas for the derivative, we write the equations of particle motion (9.4) in the initial variables ϕ and Y :

dϕ

dωt
= −2p− 6

ε

Ymax

(
p2 − 1

4

)
cos (ωt) sinϕ,

dp

dωt
=

ε

Ymax

(
p2 − 1

4

)
(sin (ωt) sinϕ+ 2p cos (ωt) cosϕ), (9.5)

Y = (1/2 + p)Ymax.

The obtained system is equivalent to the initial system (8.1). PRP can be found numerically from this system. The
result is identical to that obtained above.

Poincaré mapping makes it possible to calculate PRP from recursive relations. Using the parametric method
described above, we construct the Poincaré map with accuracy up to ε3. For this, we shall expand the Hamiltonian
(9.2) as

˜̃H(τ, q, p) = εωH1 + ε2ωH2 +O(ε3),

where

H1 = (p2 − 1/4)(sin τ cos(q − 2pτ)− 2p cos τ sin(q − 2pτ)),

H2 = −(p2 − 1/4)[sin2 τ sin2(q − 2pτ) + (1/2)p sin 2τ sin(2(q − 2pτ))] (τ = ωt),

and employ formula (4.2).
To simplify the calculations, we introduce the function

g(τ, q, p) = cos q − cos τ cos (q − 2pτ).

Then,
2π∫
0

H1 dτ =
(
p2 − 1

4

)
g(τ, q, p).

For the first approximation, we obtain

Ψ1(q, p) = (p2 − 1/4)g(2π, q, p) = −2f(p) sinQ,

f(p) = (p2 − 1/4) sin (2πp), Q = q − 2πp.
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For the second approximation,

Ψ2(q, p) = Ψ21(q, p) + Ψ22(q, p),
(9.6)

Ψ21(q, p) = −1
2

2π∫
0

{
H1,

τ∫
0

H1 dτ
′
}
dτ, Ψ22(q, p) =

2π∫
0

H2 dτ.

Using the identities

−
{
H1,

τ∫
0

H1 dτ
′
}

=
(
p2 − 1

4

)2

(gτqgp − gτpgq) + 2p
(
p2 − 1

4

)
(gτqg − gτgq),

gτqgp − gτpgq = −2 sin q
d

dτ
(τ cos τ sinQ) + 2(cos τ sinQ)2,

2π∫
0

(gτqgp − gτpgq) dτ = π(1− 2 cos (4πp)) +
(

2π − sin(4πp)
4p

8p2 − 1
4p2 − 1

)
cos 2Q,

2π∫
0

(gτqg − gτgq) dτ = 2πp− sin (4πp)

we find the integrals in (9.6) and the function Ψ for the Poincaré map:

Ψ(q, p) = εΨ1(Q, p) + ε2Ψ2(Q, p) +O(ε3), Ψ2(Q, p) = u(p) + v(p) cos 2Q,

u(p) = π(p2 − 1/4)2(5/2− cos (4πp))− p(p2 − 1/4) sin (4πp),

v(p) = π(p2 − 1/4)2 − (p2 − 1/4)(p2 − 5/8) sin (4πp)/(4p).

Using (2.4), we obtain the Poincaré map

q0 = x−Ψy/2, p0 = y + Ψx/2, q1 = x+ ψy/2, p1 = y − ψx/2, (9.7)

which allows the coordinates of the next Poincaré recurrence point q1 and p1 to be calculated from the coordinates
of the previous point q0 and p0. The initial coordinates of the PRP are found from the formulas ϕ0 = q0 and
ϕ1 = q1 − 4πp1.

The map (9.7) can be simplified by converting to the new variables Q0 = q0 − 2πp0, Q1 = q1 − 2πp1, and
x′ = x− 2πy:

Q0 = x′ −Ψy/2, p0 = y + Ψx′/2, Q1 = x′ + Ψy/2, p1 = y −Ψx′/2. (9.8)

Then,

Ψ(x′, y) = εΨ1(x′, y) + ε2Ψ2(x′, y) +O(ε3),
(9.9)

Ψ1(x′, y) = −2f(y) sinx′, Ψ2(x′, y) = u(y) + v(y) cos 2x′.

Thus, the required Poincaré map ϕ0, Y0 → ϕ1, Y1 is represented as a superposition of three maps.
The first map ϕ0, Y0 → Q0, p0 is obtained from the formulas

p0 = Y0 − 1/2, Q0 = ϕ0 − 2πp0. (9.10)

The second map Q0, p0 → Q1, p1 is determined in parametric form from formulas (9.8) and (9.9). The third map
Q1, p1 → ϕ1, Y1 is determined as follows:

Y1 = p1 + 1/2, ϕ1 = Q1 − 2πp1. (9.11)

Figure 3 shows the phase portraits of PRP for ε = 0.2 and 0.4 obtained by solution of the algebraic equations
(9.8)–(9.11). A comparison with the corresponding phase portraits in Fig. 2 shows that they coincide qualitatively.
Moreover, the positions of the fixed points, denoted by light circles, and the elliptic (stable fixed) and hyperbolic
(unstable fixed) points practically coincide. In Figs. 2 and 3, the regions of chaotic and ordered motions of the
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Fig. 3. Diagram of viscous flow between eccentrically rotating cylinders [asymptotic solution by Eqs. (9.8)–(9.11)];
notation same as in Fig. 2.

points differ little. Thus, for ε < 0.5, the accuracy of function (9.9) and the parametric map obtained using this
function is sufficient to determine the phase trajectories of the PRP and to describe transition to chaos.

10. Fixed Points of the Poincaré Map. The phase portrait of PRP can be described qualitatively if
one finds the fixed points of the map and study their stability. In the neighborhood of elliptic points, PRP lie on
closed invariant curves similar to ellipses. Such motion is ordered.

In the neighborhood of hyperbolic points, PRP can be arranged randomly.
The fixed points can be found analytically using the map (9.8)–(9.11). The main fixed points are determined

from the equations Y0 = Y1 and ϕ0 = ϕ1. From this, using (9.8)–(9.11), we obtain

p0 = p1 = y, Y0 = Y1 = 1/2 + y, ϕ0 = ϕ1 = x′; (10.1)

Ψx′ = −2ε cosx′(f(y) + 2εv(y) sinx′) = 0,
(10.2)

Ψy − 4πy = ε2(u′(y) + v′(y) cos 2x′)− 2εf ′(y) sinx′ − 4πy = 0.

System (10.2) is equivalent to the following two systems:

cosx′ = 0, ε2(u′(y)− v′(y))− 2εf ′(y) sinx′ − 4πy = 0; (10.3)

f(y) + 2εv(y) sinx′ = 0, ε2(u′(y) + v′(y) cos 2x′)− 2εf ′(y) sinx′ − 4πy = 0. (10.4)

System (10.3) has two roots, which can be obtained using asymptotic expansions in powers of y. The points
corresponding to the roots

x′ = π/2, ε = 4y + 104y3, y ∈ (0, 0.1),
(10.5)

x′ = 3π/2, ε = −4y − 104y3, y ∈ (−0.1, 0)

are denoted by M1 and M2. Using (10.1), from (10.5) we obtain the coordinates ϕ and Y of the points M1 and M2.
For any values of ε, system (10.4) has two solutions:

x′ = 0, y = 0, x′ = π, y = 0. (10.6)

The points corresponding to these solutions are denoted by M3 and M4. In addition, for ε > 0.587, system (10.4)
has solutions sinx′ = −4.54y− 32.2y3 + . . . defined by the asymptotic series ε = 0.587 + 17.7y2 + . . . . However, for
ε > 0.5, the obtained map is inapplicable, and, therefore, the last solutions are not considered. Thus, solution (10.6)
defines two more fixed points M3 and M4. As follows from (10.1) and (10.6), the coordinates ϕ and Y of these
points are equal to (0, 1/2) and (π, 1/2), respectively and do not depend on ε.

The obtained fixed points correspond to the periodic solutions of the Hamiltonian equations with a period
ωt = 2π. In addition, there are series of fixed points corresponding to a period of 2πn. These points are determined
from the equations ϕn = π0 + 2πk and yn = pn− p0; they can also be found analytically. We shall restrict ourselves
to consideration of the stability of the obtained fixed points (10.5) and (10.6).
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In the neighborhood of a fixed point, we have

dQ1 = A11dQ0 +A12 dp0, dp1 = A21dQ0 +A22 dp0,

dQ0 = dϕ0 − 2π dp0, dϕ1 = dQ1 − 2π dp1,

where the coefficients Aij [see (5.2)] are expressed in terms of the second derivatives of the parametric function
Ψ(x′, y) defined by formula (9.9). The second group of equalities follows from (9.10) and (9.11). From these linear
relations, we obtain

dϕ1 = Ã11 dϕ0 + Ã12 dp0, dp1 = Ã21 dϕ0 + Ã22 dp0,

Ã11 = A11 − 2πA21, Ã12 = A12 − 2π(A11 +A22) + 4π2A21, (10.7)

Ã21 = A21, Ã22 = A22 − 2πA21.

The first invariant of the map (10.7) has the form

I = Ã11 + Ã22 = A11 +A22 − 4πA21.

The matrix coefficients are expressed in terms of the function Ψ in (9.9) using formulas (5.2):

I = 2(2− J)/J + 4πΨxx/J. (10.8)

The secular equation m2 − Im + 1 = 0 for |I| 6 2 has complex roots with absolute values equal to unity. In this
case, the fixed points are stable (elliptic points). In view of (10.8), the stability conditions are written as

−1 6 πΨx′x′ = 2πεf(y) sinx′ − 4πε2v(y) cos 2x′ 6 J − 1,
(10.9)

J − 1 = (ΨxxΨyy −Ψ2
xy)/4.

Let us study the stability of the fixed points M1 and M2 [see (10.5)]. Using the series f(y) = −(π/2)y +
(2π+ π3/3)y3 + . . ., v(y) = −(3/32)π+ ((3/8)π+ (5/12)π3)y2 + . . . , the condition (10.9) becomes −1 6 −10(πy)2.
From this it follows that for 0 6 y 6 y0 ≈ 1/(π

√
10) ≈ 0.1 and ε 6 ε0 ≈ 0.505, the point M1 [π/2, 1/2+ε/4+O(ε3)]

is stable. The second symmetrical fixed point M2 [3π/2, 1/2 − ε/4 + O(ε3)] is stable for the same values of the
parameter ε. These fixed points obtained in numerical experiments are shown by light circles in Fig. 2. For ε = 0.1,
0.2, 0.3, and 0.4, the points are elliptic points. In the neighborhood of these points, PRP are located on closed
invariant curves. For ε = 0.5, the fixed points M1 and M2 lose stability, and the flow region is almost entirely filled
chaotically with PRP.

The stability of the fixed points M3 and M4 [see (10.6)] is studied similarly. We calculate the second
derivatives Ψ at these points:

Ψxx = −4ε2v(0) = 3πε2/8, Ψyy = ε2(u′′(0) + v′′(0)) = ε2(5π/4 + 11π3/6) = 60.8ε2,

Ψxy = 2εf ′(0) = −επ, J − 1 = −2.467ε2 + 17.9ε4.

Substituting these derivatives into the stability condition, we obtain −1 6 3.7ε2 < −2.47ε2 + 17.9ε4. From this it
follows that the fixed points M3(0, 1/2) and M4(π, 1/2) are unstable for ε < 0.587, i.e., they are hyperbolic points.
For ε > 0.587, these points are stable but the map (9.8)–(9.11) is inapplicable for ε > 0.5.

The numerical calculations agree with the theoretical conclusions. In Fig. 2, the fixed points M3 and M4

(open points) are hyperbolic points. For small ε, chaos occurs in small neighborhoods of these points. The areas of
the chaotic regions increase with increase in ε. For ε ≈ 0.5, the area of the chaotic region is maximal. In this case,
all fixed points M1, M2, M3, and M4 are unstable.

Conclusions. The motion of viscous fluid particles between eccentrically rotating cylinders (see Fig. 1) is
described by the Hamiltonian equations (9.5). For small eccentricity (ε 6 0.2), the PRP are located on invariant
curves (see Fig. 2) and chaos is not observed. The Poincaré map over the period has four fixed points (see Fig. 2):
elliptic points M1 (π/2, 1/2 + ε/4) and M2 (3π/2, 1/2− ε/4) for ε < 0.5 and hyperbolic points M3 (0, 1/2) and M4

(π, 1/2) for any ε. In the neighborhood of the hyperbolic points, dynamic chaos is observed for ε > 0.2. The area
of the chaotic region of the PRP increases as ε increases to the value ε ≈ 0.5. For ε = ε0 ≈ 0.5, the points M1

and M2 become hyperbolic in a small time interval ∆ε. At this moment, the area of the chaotic region is maximal.
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For ε > ε0 + ∆ε, the points M1 and M2 become elliptic again. In the neighborhood of these points, the motion is
ordered, and the area of the chaotic region decreases, accordingly.

The Poincaré parametric mapping is an effective tool for calculating fixed points, studying their stability,
and describing transition to chaos. The phase portraits of PRP obtained by the calculated Poincaré map are in
good agreement with results of numerical experiments (see Fig. 3).

The example considered is a mathematical model of a mixer for mixing high-viscosity media. The best
mixing is attained at ε ≈ 0.5.

We thank D. M. Klimov and V. F. Zhuravlev for useful discussions of the results of this work.
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 02-01-00567).
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